你好!正态分布是一种常见的概率分布模型,也称为高斯分布。
它的特点是呈钟形曲线,中间高、两侧逐渐降低。
在正态分布中,平均值、中位数和众数都位于分布的中心。
当我们观察一组数据或现象时,如果符合正态分布,那么大部分数据会集中在平均值附近,而离平均值较远的数据出现的概率会逐渐减小。
正态分布在自然界和社会科学中广泛应用,例如测量误差、人群身高、智力测试分数等往往符合正态分布。
希望这个简短的解释对您有所帮助!
正态分布函数
中文名正态分布
英文名Gaussian curve
别名高斯分布
发现者棣莫弗
所属学科概率论
基本概念正态分布(Normal distribution)是一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。遵从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。
正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x 轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。
μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
定义概率论中最重要的一种分布,也是自然界最常见的一种分布。该分布由两个参数——平均值和方差决定。概率密度函数曲线以均值为对称中线,方差越小,分布越集中在均值附近。[1]
特征服从正态分布的变量的频数分布由μ、σ完全决定。
集中性:正态曲线的高峰位于正中央,即均数所在的位置。对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ2):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。
u变换:为了便于描述和应用,常将正态变量作数据转换。μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X=μ为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。
σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
面积分布
1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同 范围内正态曲线下的面积可用公式计算。
⒉几个重要的面积比例轴与正态曲线之间的面积恒等于1。正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68268949%,横轴区间(μ-196σ,μ+196σ)内的面积为95449974%,横轴区间(μ-258σ,μ+258σ)内的面积为99730020%。
基本概念正态分布(Normal distribution)是一种概率分布。正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。遵从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。
正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x 轴上方的钟形曲线。当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。
μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。
基本术语正态分布应用最广泛的连续概率分布,其特征是钟形曲线。附:这种分布的概率密度函数为:
正态分布若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号 ~。其中μ、σ^2 是两个不确定常数,是正态分布的参数,不同的μ、不同的σ^2对应不同的正态分布。
正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1。
标准正态曲线
标准正态曲线N(0,1)是一种特殊的正态分布曲线,以及标准正态总体在任一区间(a,b)内取值概率。
1.标准正态分布是一种特殊的正态分布,标准正态分布的μ和σ^2为0和1,通常用ξ(或Z)表示服从标准正态分布的变量,记为 Z~N(0,1)。
2.标准化变换:此变换有特性:若原分布服从正态分布 ,则Z=(x-μ)/σ ~ N(0,1) 就服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。
⒊ 标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。
小概率事件和假设检验的基本思想
小概率事件通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的几乎不可能发生是针对一次试验来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用小概率事件几乎不可能发生的原理进行推断时,我们也有5%的犯错误的可能。
面积分布1.实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同 范围内正态曲线下的面积可用公式计算。
⒉几个重要的面积比例轴与正态曲线之间的面积恒等于1。正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68268949%,横轴区间(μ-196σ,μ+196σ)内的面积为95449974%,横轴区间(μ-258σ,μ+258σ)内的面积为99730020%。
两种正态分布一般正态分布与标准正态分布的转化
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体 ,其取值小于x的概率。只要会用它求正态总体 在某个特定区间的概率即可。小概率事件和假设检验的基本思想小概率事件通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。这种认识便是进行推断的出发点。关于这一点我们要有以下两个方面的认识:一是这里的几乎不可能发生是针对一次试验来说的,因为试验次数多了,该事件当然是很可能发生的;二是当我们运用小概率事件几乎不可能发生的原理进行推断时,我们也有5%的犯错误的可能。
一般正态分布与标准正态分布的区别与联系
正态分布也叫常态分布,是连续随机变量概率分布的一种,自然界、人类社会、心理和教育中大量现象均按正态形式分布,例如能力的高低,学生成绩的好坏等都属于正态分布。标准正态分布是正态分布的一种,具有正态分布的所有特征。所有正态分布都可以通过Z分数公式转换成标准正态分布。
两者特点比较:
⑴正态分布的形式是对称的,对称轴是经过平均数点的垂线。
⑵中央点最高,然后逐渐向两侧下降,曲线的形式是先向内弯,再向外弯。
⑶正态曲线下的面积为1。正态分布是一族分布,它随随机变量的平均数、标准差的大小与单位不同而有不同的分布形态。标准正态分布是正态分布的一种,其平均数和标准差都是固定的,平均数为0,标准差为1。
⑷正态分布曲线下标准差与概率面积有固定数量关系。所有正态分布都可以通过Z分数公式转换成标准正态分布。
主要特征
1.集中性:正态曲线的高峰位于正中央,即均数所在的位置。
2.对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
3.均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
4.正态分布有两个参数,即均数μ和标准差σ,可记作N(μ,σ):均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。
5 u变换:为了便于描述和应用,常将正态变量作数据转换。μ是正态分布的位置参数,描述正态分布的集中趋势位置。正态分布以X=μ为对称轴,左右完全对称。正态分布的均数、中位数、众数相同,均等于μ。
6 3σ原则:
3σ原则:P(μ-σ<X≤μ+σ)=683%P(μ-2σ<X≤μ+2σ)=954%P(μ-3σ<X≤μ+3σ)=997%。
σ
描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。
曲线性质
1当x<μ时,曲线上升;当x>μ时,曲线下降。当曲线向左右两边无限延伸时,以x轴为渐近线。
2正态曲线关于直线x=μ对称。
3σ越大,正态曲线越扁平;σ越小,正态曲线越尖陡。
4在正态曲线下方和x轴上方范围内区域面积为1。